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Abstract: In this paper, lost update problem occurs when two users read and update the same data in a particular row 

of the same database at the same time.  one of the main problems found in tools that support MDE is the fact that little 

attention is paid to questions related to the platform features in the software development trajectory. Many machine 

learning algorithms iteratively transform some global state (e.g., model parameters or variable assignment) giving the 

illusion of serial dependencies between each operation.  
 

Keywords: Update, Pessimistic, Optimistic, Concurrency, Roles. 

 
I. INTRODUCTION 

 

The lost update problem occurs when two users read and 

update the same data in a particular row of the same 

database at the same time. The lost update problem can be 

happened when the users are modifying some data without 

knowing about that there are other users are updating the 

same data that he or she is updating. The result of that, the 

last user who has updated the data is going to have to 

correct amount or values [1]. Deadlock is a case that 

happens when two or more users want to use the same 

resource at the same time by blocking each another to get 

to the resource. Clearly the deadlock exists in transaction 

tables in database, especially when there is a group of 

blocked transactions each having a data and waiting to get 

another data that held by another transaction. Obviously 

no one of them have the ability to continue unless the 

other transaction unlocked the data. In the main while they 

are losing and wasting their time and nothing can be done 

because they are waiting for each other.  
 

The optimistic concurrency term means that there are two 

or more than two users updating the same row at the same 

time without locking each other. Whenever that occurs one 

of those users is going to update the data and the second 

user will get a message that the data has been updated, so 

the second user will notify the changes that just happened. 

pessimistic concurrency means only one user locking the 

row to disallow another user to update the same data at the 

same time [3]. One of the advantages of pessimistic 

concurrency is that the user ensures that the data has been 

updated to the database safely. Another advantage is it 

easy to be implemented. It has some disadvantages such as 

it is not fast as the optimistic concurrency, and it is not 

able to scalable which many it is not good for online stores 

because it is tied for limited users. 
 

The aim of this study was to develop a successful PPI with 

a strong theoretical and empirical foundation that can 

address he weaknesses and limitations of previous work, 

as well as increase participant compliance [2]. A wealth of 

research supports the cultivation of optimism as an 

individual skill that can improve psychological well-being. 

Optimism involves a positive outlook on life, both during  

 

 
times of success and struggle (Segerstrom, 2006). 

Optimistic people believe that good things will happen to 

them in the future and that their goals are achievable. 

Optimism is strongly correlated with positive affect and 

better coping in a wide variety of stressful situations 

(Carver, Schier, & Segerstrom, 2010). It is also associated 

with fewer mental and physical health symptoms (Lench, 

2011), increased motivation and effort, and increased 

engagement with one’s goals (Segerstrom, 2006). Taken 

together, research suggests that being optimistic is 

associated with various indices of positive functioning.  

 

II. TRANSACTION COMMIT 
 

On commit, the STM acquires the locks corresponding to 

the objects in its log. The system makes use of the fair 

multiple-reader, single-writer version of the MCS lock in 

[2] to allow different threads to commit concurrently even 

if their read-sets overlap. These locks build a queue of 

requestors to provide FIFO order, while allowing for 

multiple concurrent readers. The lock header is containing 

the current reader count and pointers to the queue tail and 

the first writer in the queue. Each lock requestor allocates 

a queue node in shared memory, and adds it to the end of 

the queue determined by the tail pointer. Threads waiting 

for a lock spin-wait in their own queue node. When a 

writer receives a lock, it proceeds, and on release, it 

notifies the next node in the queue. Readers must, 

additionally, increase and decrease the reader count and 

notify consecutive readers to allow for concurrent reading. 

The multiple updates of this reader count field can 

generate coherence contention.  
 

A lock-based STM adds four main overheads when 

compared with running the same transactions on a native 

HTM First, the locking mechanism itself is not necessary 

in a HTM system. Second, transactions need to maintain 

the read-set and write-set lists. This introduces a list-

search for each object accessed, and an increase in the 

used memory. In HTM systems the hardware itself tracks 

the objects accessed in the transaction (with read and write 

bits, signatures or other mechanisms). Third, on commit, 
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the lists have to be traversed to lock and validate the 

objects. Fourth, the indirection-based object structure 

makes it necessary to copy entire objects when opening 

them for update even if only a single field is going to be 

touched [4].  

 

III. OPTIMISTIC CONCURRENCY 
 

Many machine learning algorithms iteratively transform 

some global state (e.g., model parameters or variable 

assignment) giving the illusion of serial dependencies 

between each operation. However, due to sparsity, 

exchangeability, and other symmetries, it is often the case 

that many, but not all, of the state-transforming operations 

can be computed concurrently while still preserving 

serializability: the equivalence to some serial execution 

where individual operations have been reordered. This 

opportunity for serializable concurrency forms the 

foundation of distributed database systems. For example, 

two customers may concurrently make purchases 

exhausting the inventory of unrelated products, but if they 

try to purchase the same product then we may need to 

serialize their purchases to ensure scent inventory. One 

solution (mutual exclusion) associates locks with each 

product type and forces each purchase of the same product 

to be processed serially [7]. This might work for an 

unpopular, rare product but if we are interested in selling a 

popular product for which we have a large inventory the 

serialization overhead could lead to unnecessarily slow 

response times. To address this problem, the database 

community has adopted optimistic concurrency control 

(OCC) [14] in which the system tries to satisfy the 

customers’ requests without locking and corrects 

transactions that could lead to negative inventory (e.g., by 

forcing the customer to check out again) figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig 1: OPTIMISTIC CONCURRENCY 
 

IV. PRECISE SERIALIZATION 
 

The precise serialization (PS) algorithm solves the 

unnecessary transaction restart problem of the forward 

validation algorithm by checking every different type of 

data conflict and explicitly recording serialization order 

among transactions. It arranges the serialization order of 

two transactions whenever the two have a data conflict. 

The PS algorithm uses two different ordering actions to 

arrange serialization order of transactions: forward and 

backward ordering. The forward ordering places Tc~ after 

T v in execution history, i.e., their serialization order 

becomes T v --~ Tc~. This ordering is used to resolve 

conflicts incurred by write operations of T~R, i.e., read-

write and write-write conflicts. The serialization order 

reflects the fact that Tc~'S updates do not affect the 

operations of T v. To resolve the other conflict type, i.e., 

write-read conflicts between T v and T~R, the PS 

algorithm, unlike FV, does not unconditionally restart 

Tc~. Instead, PS places To, ahead of T v in execution 

history, i.e., To, ---~ T v, which implies that TcR did not 

read from T v. This placement of To, ahead of T v in 

execution history is referred to as the backward ordering.  
 

In the PS algorithm, a running transaction, Tc~, restarts 

only when it is involved in one or more conflicts caused 

by its write operations (read-write and write-write 

conflicts) as well as conflicts caused by its read operations 

(write-read conflicts) with a validating transaction T v. In 

such a situation, PS will attempt to place Tc~ both behind 

and in front of T v in execution history, which means a 

violation of serializability figure 2. Such Tc~ is referred to 

have an antagonistic conflict with T v and needs to be 

restarted. Note that such a transaction restart is inevitable 

and absolutely necessary to ensure data consistency [8]. 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig 2: PRECISE MODEL 

 

V. SYMBOLIC MODULAR DEADLOCK ANALYSIS 
 

Concurrent programs are prone to a variety of thread-

safety violations arising from the presence of data races 

and deadlocks. In practice, as data races are abundant and 

difficult to debug, they have garnered considerable 

attention from the program analysis community. A knee-

jerk response to avoiding race conditions is evident in the 

prolific use of locking constructs in concurrent programs. 

Languages such as Java have promoted this by providing a 

convenient synchronized construct to specify mutual 

exclusion with monitors [6]. Locking is sometimes naively 

used as a “safe” practice, rather than as a requirement. 

Overzealous locking not only causes unnecessary 

overhead, but can also lead to unforeseen deadlocks. 

Deadlocks can severely impair real-time applications such 

as web-servers, database systems, mail-servers, device 

drivers, and mission-critical systems with embedded 

devices, and typically culminate in loss of data, 

unresponsiveness, or other safety and liveness violations. 

we focus on deadlocks arising from circular dependencies 

in synchronization constructs such as locks and signaling 
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primitives. Languages such as Java combine the mutual 

exclusion provided by locks with the cooperative 

synchronization provided by signaling primitives into a 

single monitor construct. In this paper, we use the abstract 

term lock to mean both specialized lock variables in 

languages such as C, C++ /pthread, and monitors used for 

enforcing mutual exclusion in Java. Deadlock detection is 

a well-studied problem, and both static and dynamic 

approaches have been proposed (Havelund 2000; Agarwal 

and Stoller 2006; Corbett 1996; von Praun 2004; Artho 

and Biere 2001;Naiketal.2009; Williams et al. 2005). 

Typically, such techniques construct lock-order graphs 

that track dependent- cites between locks for each thread. 

Lock-order graphs for concurrent threads are then merged, 

and a cycle in the resulting graph indicates a possibility of 

a deadlock. Such techniques typically assume a closed 

system, and are thus useful for detecting existing 

deadlocks in a given application. analyzing concurrent 

libraries for deadlocks has two main aspects: First of all, 

we wish to identify if, for any client, there are library 

methods that can be concurrently called in a manner that 

causes a deadlock. This is termed the deadlock ability 

problem. Secondly, we wish to use the results of this 

analysis to search for the existence.  
 

We have shown how optimistic concurrency control can 

be usefully employed in the design of distributed machine 

learning algorithms. As opposed to previous approaches, 

this preserves correctness, in most cases at a small cost. 

We established the equivalence of our distributed OCC 

DP-means, OFL and BP-means algorithms to their serial 

counterparts, thus preserving their theoretical properties. 

In particular, the strong approximation guarantees of serial 

OFL translate immediately to the distributed algorithm. 

Our theoretical analysis ensures OCC DP-means achieves 

high parallel is without ascribing correctness. We 

implemented and evaluated all three OCC algorithms on a 

distributed computing platform and demonstrate strong 

scalability in practice [10]. We believe that there is much 

more to do in this vein. Indeed, machine learning 

algorithms have many properties that distinguish them 

from classical database operations and may allow going 

beyond the classic formulation of optimistic concurrency 

control. In particular, we may be able to partially or 

probabilistically accept non-serializable operations in a 

way that preserves underlying algorithm invariants. Laws 

of large numbers and concentration theorems may provide 

tools for designing such operations. Moreover, the convict 

detection mechanism can be treated as a control knob, 

allowing us to softly switch between stable, theoretically 

sound algorithms and potentially faster coordination-free 

algorithms [11].  

 

VI. CONCLUSION 
 

one of the main problems found in tools that support MDE 

is the fact that little attention is paid to questions related to 

the platform features in the software development 

trajectory. As a result, MDE tools are limited to certain 

platforms and PIM-into-PSM model transformation 

processes.  In order to achieve efficient, easily adaptable 

model transformation processes, the specification of 

independent platform features is necessary. Concerning 

RTOS-based embedded software development, the 

benefits in using this approach become even more evident 

due to both the inherent complexity of this kind of 

software and the existence of a wide variety of applicable 

platforms. 
 

We are concave able but less costly than persistent save 

points. In a system where ceded here with volatile save 

points or mark points, which are not the level of data 

contention is low and the check pointing overhead is high, 

check pointing will result in degraded performance 

(increased transaction response time) even when adequate 

processing resources are available. This is especially so 

when multiple checkpoints are taken. An adaptive method 

need be introduced to suppress check pointing at low data 

contention levels and activate it only when the data 

contention level is high.  
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